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Numerical Approximations to Nonlinear Conservation 
Laws With Locally Varying Time and Space Grids 

By Stanley Osher* and Richard Sanders** 

Abstract. An explicit time differencing technique is introduced to approximate nonlinear 
conservation laws. This differencing technique links together an arbitrary number of space 
regimes containing fine and coarse time increments. Previous stability requirements, i.e. the 
CFL condition, placed a global bound on the size of the time increments. For scalar, 
monotone, approximations in one space dimension, using this variable step time differencing, 
convergence to the correct physical solution is proven given only a local CFL condition. 

1. Introduction. We shall consider numerical approximations to the initial value 
problem for nonlinear systems of conservation laws 

3w d a (1.1) aot + z a-j-(x' t,w) = g(x, t,w), w(x,0) = wO(x). 

Here x = (x( .. ,x(d)) E Rd, w(x, t) is an m-vector of unknowns and each flux 
function, f(x, t, w), is vector-valued having m components. The system (1.1) is said 
to be hyperbolic when all eigenvalues of every real linear combination of the 
Jacobian matrices are real. It is well known that solutions of (1.1) may develop 
discontinuities in finite time, even when the initial data are smooth. 

Among the numerical methods used to approximate discontinuous solutions of 
(1.1), those based on shock capturing have proved most successful. However, 
convergence of any explicit method can be possible only under a restrictive CFL 
condition. Another possibility is to use one of a variety of unconditionally stable 
implicit methods. One soon discovers that, in general, a nonlinear inversion must be 
implemented at each time step. Aside from the inherent computational complexity 
introduced by implementing such inversions, these techniques often fail to perform 
well for large time steps when nonsteady discontinuities are present. 

For these reasons we shall consider explicit finite difference methods which use 
locally varying time grids. The global CFL restriction is replaced by a local restric- 
tion. Our goal is to develop a differencing technique at interface points between 
regions of distinct time increments. To do this we study the numerical flux function 
from a finite volume viewpoint. Here we stress that the finite volume construction 
yields an algorithm which is in conservation form, and in the scalar case satisfies a 

Received September 14, 1982. 
1980 Mathematics Subject Classification. Primary 65M10; Secondary 65M05. 
*Research supported by NSF Grant #MCS 82-007788 and NASA University Consortium Agreement 

#NCA2-OR390-202. 
**Research supported by NSF Grant #MCS 82-00676. 

?01983 American Mathematical Society 
0025-5718/83 $1.00 + $.25 per page 

321 



322 STANLEY OSHER AND RICHARD SANDERS 

discrete version of the entropy inequality when applied to monotone numerical 
fluxes. Hence, no nonphysical limit solutions appear. 

In Section 2 we will introduce a simplified version of our algorithm. We will adapt 
a standard explicit three-point conservation form difference scheme to a one-dimen- 
sional mesh containing two distinct time increments. This will motivate the more 
general version of our technique which will be discussed in Section 3. In Section 4 we 
will state and rigorously prove a convergence theorem (Theorem 3), for the scalar 
one-dimensional problem. 

2. Preliminary Motivation. We begin our discussion by considering a simple yet 
illuminating example. Consider the one space dimensional scalar Cauchy problem: 

(2.1) aw + fa (w) = 0, w(x,0) = wO(x). at ax 
Many commonly used discrete approximations to this problem are obtained by a 
three-point conservation form difference scheme. Schemes of this type may be 
written as 

(2.2) Ax _ -_+h_f(Uj__I) 

where ujn approximates w(j/x, n/t), hf is one of various numerical flux functions 
and A+ denotes the forward difference operator. We now consider a mesh which 
contains two time increments, At and /t/2. For this example we shall use At for 
j <jO and A t/2 forj 2jO + 1, wherejo is some arbitrary integer. 

Given ujn, we may obtain U7O' forj < jO- 1 via the difference equation (2.2). For 
j 2 jo + 2 one can replace At in (2.2) with A/t/2. This gives the difference equation 

(2.3) Ujn 
+ I/ 2 =n It 

Ah(ujn, Ujn_). 

For these values of j, ujn+I can be obtained from ujn by composing (2.3) with itself. 
Schematically, the resulting difference stencil is: 

't X ~ ~~~~~~~~~~~~ +< 1 > n +-: 2 

n 

j0-~- iO jO+1 j0+2 

FIGURE 1 

The only quantities whose evaluations require some thought are u?+ 1 and un+II, the Jo " 
so-called interface values. 

By way of motivation we briefly return to a mesh with constant time increments. 
The grid functions, Ujn, may be regarded as the values of a step function, uA(x, t), 
defined by 

(2.4) uA(x, t) = ujn 
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when x E [ j/x,(j + I)/x) and t E [nAvt,(n + I)zAt). We now make a standard, 
but important observation. The difference equation (2.2) may be written in terms of 
the step function (2.4). We write 

(2.5) f(J ?)X [uA(x,(n + I)At) - uA(x, nzAt)] dx 
j x 

+ | [hf (u'((j + 1)Ax, t), uA(j/Ox, t)) 

-hf (u'(jAx, t), uA((j - I)/x, t))] dt = 0. 

The formulation (2.5) now allows us to derive a scheme to combine (2.2) with 
(2.3). For x < (jo + I)/x we define the step function uA(x, t) to be 

(2.6) uA (x, t) = Uj, 

when x E [ j/x,(j + I)/x) and t E [nAvt,(n + I)zAt). For x 2 (jo + 1)5x we de- 
fine uA(x, t) to be 

(2.7) uA (x, t) = Uj, 

when x E[ jx, (j + I)/x) and t E [ n At, (n + ')At) and 

(2.8) uA(x, t) = Un+1/2 

when x E [j/ x, (j + I)/ x) and t E [ (n + ')A t, (n + I)A t). If, for j < j- 1, we 
insert (2.6) into (2.5), the difference equation (2.2) is obviously recovered. On the 
other hand, forj > jo + 2, inserting (2.6) and (2.7) into (2.5) yields the composite of 
Eq. (2.3). At the interface, we find that (2.5) applied to the step function defined by 
(2.6), (2.7) and (2.8) gives us the interface difference equations 

Jo tx 
I 
2 f ( Ujn + 1/2 

Uj uv f(un + n - )hf ( unn) (2.9) ujn + = ujn [x (2 h( u;i2,u+ + hf (uj71 ;) ju7 >) 

and 

(2.10) u,j+i, = u(u;Ih +2, u7+Il2) -hf(u,7j21/2, u;0I)]. 

Difference equations (2.2), (2.3), (2.9) and (2.10) may be written in a two-step, 
predictor-corrector type form. We write the predictor as 

(Ujn 
i S ;0, 

(2.11) Uj 
1 

Un A =t f(Ujn, ,n 

and the corrector as 

(2.12) u+ = u 2 Ax I+ [h (u jn, un1) + hf(u7?l/2, u;_11/2)]. 

This example motivates the construction for the general problem (1.1) which is 
contained in Section 3. 

The simple one-step predictor will, in general, be replaced by an M - 1 ster 
predictor. We shall allow an arbitrary number of local refinements in time wher 
advancing between time steps tn and tn+1. 
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3. The Finite Volume Method. A notion fundamental to our approach is that of 
the numerical flux. We exemplify this by considering the one space dimensional 
problem: 

(3.1) adt+af (x t, w) = g (x, t, w) 

We partition the real line into intervals 

Fj=(X: Xj- 1/2 SX <Xj+ 1/2} 

with Axj = Xj+ 1/2-Xj_ 1/2 and xj the midpoint of j. Assume that w(x, to) is given. 
We then integrate (3.1) over j, divide by Axj and arrive at 

(3.2) t __ (w(x ,t) dxItt 

= - t0 /\+Xj- _/2, tO W(X-1,,2, t0)) + 
j fg(x, tog w(x, to)) dx. 

Here, we recall the forward difference operator is defined to be 

(3.3) +fj fj+ fj, 

and we shall use S+ or A+ with superscripts when necessary. 
Define X >(x) to be the characteristic function of j, that is: 

x 
01, xE , 

Let uA(x, t) be a semidiscrete approximation to w defined by 

(3.4) uA(x, t) = NOXq(x) 

The superscript A is equal to max1zAx, and will denote the measure of grid 
refinement. We then replacef in (3.2) by a numerical flux function hf, and let u,(t), 

which is to approximate (l/1Axj)Jw(x, t) dx, evolve via the system of ordinary 
differential equations: 

(3.5) aui() 1-~ +fX-12t 0 410 at = -X ?f(JI2 u(t), u,_ ,(t)) 
J 

+ -v |fg(x, t, uj4(t)) dx. 

The numerical flux function, hf, is defined for every smooth m-vector f. It is 
furthermore assumed to be a Lipschitz continuous function of x, t, uj and uj1 
subject to the consistency requirement 

(3.6) hf (x, t, u, u) = f(x, t, u). 

Examples of such numerical fluxes will be given below. We note that the 
dependence of hf is only on the two values of uA adjacent to the boundary. This may 
restrict the accuracy of the approximation. Nevertheless, several of these approxima- 
tions perform exceptionally well for flows having strong shocks, provided that the 
flow is close to steady state [1], [7], [16]. 
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Next we consider the general multi-dimensional problem (1.1). We decompose Rd 
into nonoverlapping polyhedra 

Rd= U QJ. 
i 

for A a measure of refinement to be defined below and QJ a polyhedron. 
We assume the following property: If P(9J4) (resp. p(Q,4)) is the smallest (largest) 

diameter of the ball containing (contained in) QJ, there exists a positive constant K1 
such that 

(3.7) K -'A < inf p (QJ4) < sup (94) < KlIA. 

We also define 1 IJ to be the volume of each OA 
The analogue of (3.2) for the multi-dimensional problem is 

(3.8) aa 1 fw(x, t) dxl,=,I 

=- S2 1 (F. n)(x, to, w(x, to)) ds + S fg(x, t0, w(x, to)) dx. 

Here F is the m X d matrix 

(3.9) F 
and n = (nXo) ...,nX(d)) is the piecewise constant outward normal to QJ. Thus, for 
each boundary face the vector function 

d 

F n = nX(i)fi 
i=l1 

is a one space dimensional flux function. For these functions, we have already 
defined a class of numerical flux functions, which we now write as 
(3.10) hF.,1(x, t, ul, u2), 

with consistency implying that 

hF.n(x, t, u, U) = (F n)(x, t, u), 

and conservation form given by 

hF-(,n)(uI, U2) = -hF-n(U2, U1). 

The surface integral in (3.8) is approximated in the following manner. On each 
planar segment of boundary, PJ A, we approximate 

|(F * nill)(Xg tog w(x, to)) ds 

by 

(3.11I) |h F- n'/(X v tog u ,I, Y,t ) ds . a 
. 

. pA1 

Here, ii^ is the outer trace of uA(x, to) on P.A. and 0 is the inner trace of uA(x, to) 
on PJ. 
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In this manner we may start from any one space dimensional numerical flux 
function and create a multi-dimensional finite volume algorithm. This is done by 
obtaining hF. n at all boundaries. 

In the case when F * n does not depend explicitly on the tangential component of 
x, the right-hand side of (3.11) is trivially computed since the integrand is piecewise 
constant. 

The semidiscrete finite volume approximation to (1.1) is obtained by writing 

(3.12) U'(x, t) = '(t)XQA(x) 

and allowing u?(t) to evolve via the system of ordinary differential equations: 

a33' A_ -Ih( ti1s 
(3.13) at u,- - lhF n(x\ t' ' J ) ds + lg(x, t,5u) dx. 

at ' -ol 
u J 

IWIU 

In the scalar case it is not difficult to justify this construction when hf corresponds 
to a monotone flux function. The resulting numerical flux function (3.10) is said to 
be monotone if it is both nonincreasing in u1 and nondecreasing in u2. 

We pause for a moment to present three examples of such numerical flux 
functions. 

(A) The Godunov scheme [6]. Here the true solution to the Riemann initial value 
problem is computed and evaluated at X = 

Xj_1125 
t ' to for t - to small. The 

Riemann initial data is w(x, to) uj11 for x -< Xj_/2 and w(x, to) _ uj for x > 

X- I/2. The true solution satisfies the entropy condition (E) [9], [10], [13]. In the 
present case, this procedure yields a similarity solution which is constant along rays 
(x - xj- 12)/(t - to) = constant. Thus the numerical flux function is defined by 

(3.14) hf (Uj Uj 1 ) = f( W(XJ_1/2, to ) limf(wx_12 ) 0 
t I tofWXj12 

) 

For nonconvex f this algorithm can become fairly complicated. Furthermore the 
numerical flux function does not have continuous first partial derivatives with 
respect to its arguments. The derivatives are discontinuous when uj and uj11 are 
connected by a single steady shock [5]. In general this scheme does resolve steady 
shocks with a one-point transition. 

(B) The Engquist-Osher sheme [3], [4]. Let the increasing and decreasing parts of 
f( u) be computed exactly by 

fu fu 

(3.15) f+ (u) = max(f'(s),0) ds, M(u) Jmin( f '(s0) ds, 
0 0 

wheref is normalized so that f(0) = 0. Then we define 

(3.16) hf(u,u_1) =f (u1) +f+(u_1). 

This flux function will in general be less complicated than Godunov's. It will have 
continuous first partial derivatives and will in general resolve steady shocks with a 
two-point transition. These two properties are related, see [5]. 

(C) The Lax-Friedrichs scheme [10]. Although this scheme was originally derived 
as an explicit time marching algorithm, we can construct a semidiscrete analogue 
with 

(3.17) hf(up, u11) = 2(f(uj) + f(uj_))- (uj -uj_ 

for some positive constant K such that If'(u) I< K. 
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This numerical flux function is the simplest to compute and is smooth. However, 
the resulting algorithm smears discrete shocks excessively, [8], [4]. 

We can now state two theorems and a remark concerning semidiscrete monotone 
finite volume approximations for the scalar and homogeneous version of (1.1). The 
proofs of Theorem 1 and Theorem 2 below were given in [14] for the Engquist-Osher 
scheme. However, there is no difficulty extending these results to any monotone 
scheme. 

THEOREM 1. Let uA(x, t) and vA(x, t) be defined by (3.12) and the scalar, homoge- 
neous version of (3.13). If the numerical flux function in (3.13) is monotone, we have for 
any t1 I to > 0 

||U (X, tI) V (X, t1) I dx <| |UA(X to) - v(X, to) I dx. 

Definition. For a scalar function of the type (3.12) we define its space variation as 

Var(uA) =2 |u(x1) - uA(x,) d-I 

j,' 

where each xi is the centroid of Q The sum is taken over all j, / such that QJ and 
Q4 have a common planar boundary. 

THEOREM 2. Suppose that uA(x, t) is defined as in Theorem 1. Furthermore, suppose 
that the Var(uA(., t)) remains uniformly bounded for all A tending to zero and all 
t E [0, T]. Then the limA 0 uA(x, t) exists in L (Rd) on the bounded strip t E [0, T], 
and the limit is the unique entropy condition satisfying weak solution of the scalar and 
homogeneous version of Eq. (1.1). 

Remark 1. If {Q6} is constructed using the tensor product of one-dimensional 
(possibly variable) spatial grids and if the initial data are in L?? n L1 n BV, then the 
assumptions of Theorem 2 are valid. See [15]. 

We now turn to the time discretization of this method. A simple explicit method is 
obtained by defining uA(t') in the usual fashion with Atn = tnl - tn and ap- 
proximating the differential system 

(3.18) Aa=S(x, uu) 
lt=tn at 

by 

(3.19) AJ(tn ) = A(tn) + AtnKC(Xj tn 5 -(tn), A(tn)). 

The drawback here is that the convergence of this method is possible only under a 
restrictive CFL condition. The analogues of Theorem 1, Theorem 2 and Remark 1 
above can be proven [14], [15] under the restriction: 

At a_ 

(3.20) max A u (hF n)(X5 t, u, u) ds < 1 

(For F explicitly independent of x, t, the condition need only be checked for all u 
contained in the convex hull of the initial data. For nondifferentiable but Lipschitz 
continuous flux functions, the derivative may be replaced by the Lipschitz constant.) 

This global restriction, (3.20), is what we shall remove below by using local explicit 
time discretization. 
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3.2. Local Time Discretization. We begin this section by considering the autono- 
mous and homogeneous versions of (3.1). 

Partition the space axis into a union of disjoint intervals 

R= U 4.. 
I 

At each time level t', decompose this partition into two subsets U1,es?"4 and 
U1 a en , where en is any subset of the integers (possibly dependent on n). The time 
increment [t0, t"nl) is associated with those j's belonging to C". Otherwise, we 
partition [0, Oh') into U72o [tn?, t"+7 '+'), where t"+"' is defined below, and 
associate these time increments to thosej's not belonging to C". 

Let {Ok}k=/ be a sequence of positive numbers such that k-Mak = 1. Define 

711 = oI + * +a, with % 0. We now define t"+'t' = t"+"1 + cv+lAt". 
We propose to advance from time level tn to time level t"n+I via a predictor-correc- 

tor type method. 
The predictor is as follows: 
Fork ,...,M- 1 

(3.21) 

I[Uj(tn). j E (2n, 

ui (tn+7k) k-I 

_ Uj(tn) -A C"F ,A+ hf(Uj(tn+t,) Uj_ (tn+71)), j j en 
1=O 

where X,n will be defined as At"/Axj and, from now on, the superscript A will be 
ignored. The corrector is: 

M-I 

(3.22) ujt+)=u("- , a,+ A+ hf ( j(tn+nl) Uj_,(tn+,nl)). 
1=0 

This approach will later be justified. 
We note that if j- 1, j and j + 1 all belong to Cn the algorithm reduces to 

(3.23) Uj(t"+ 1) = uj(t") - XA+ hf(Uj(t"), Uj_ (tn)). 

Furthermore, forj not belonging to C", the algorithm may be written inductively as 

(3.24) Uj(tnt+*k+l) = Uj(tn+71k )-Oak+ 'A+ h(Uj(t"+'"k), Uj_ (tn+.k)) 

for k = 0,..., M - 1. Thus, the necessary computer programming is quite simple. 
Values of uj at the same time level depend only on the values of uj 1, uj and uj+ l at 
the previous time level, except whenj belongs to Ct and either j- 1 or ] + 1 does 
not. We call such points xj interface points. For these points, we must store the 
associated neighboring values of uj at all M - 1 intermediate time levels so that uj 
may be advanced from tn to t"+'. 

In Section 4 we shall prove convergence for the scalar and monotone versions of 
this algorithm subject to a local CFL condition. The remainder of the present section 
will be devoted to motivation and generalization of the previous algorithm (3.21), 
(3.22). 
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Suppose that we integrate (3.8) over the time interval [t', t"]. We then obtain 

I Iw(x, t") dx 

(3.25) = I (t)dx-| (F n)(x,t,w(x,t))dsdt 

+ Q jfg(x, t, w(x, t)) dx dt. 

Next, we partition Rd as before, again decomposing this partition into two subsets 
U1 jEe.,Q and Uj e,Qj. Forj belonging to C" define 

(3.26) uj(t) = uj(tn), when t E[tn, tn+), 

and forj not belonging to ,C3 define 

(3.27) uj(t) = Uj(tn+'3.), when t [t'+1k tf+k+I) 

In (3.25) we let t' = t" and t" = t"+' for] GE C" or forj , C' we let t' = tn+k and 
t= ff+71k+I, 0 < k M - 1. Formally substituting hF,*,, for F' n and inserting 

(3.26) and (3.27) into (3.25), we obtain a discrete finite volume approximation to 
(1.1): Forj E 3n we have 

(3.28) uj(tn+'l) = uj(tn) hF- n(xj t, ( ij(t),quj(t)) ds dt 

+ yS| J"' |f g( x, t, Uj1(tn)) dx dt. 

Forj a Cn we have 

u jtttn+,,) 

(3.29) - u1(t' k) - j j | hF.n(x, tf j(tn+ ), uj(tn+1?k)) dsdt 

+ X t | j | t, u( t+l )) dx dt, 

where k = 0,...,M - 1. This algorithm can be cast into predictor-corrector form. 
The predictor becomes: 

Fork= ,...,M-1 

(3.30) 

Uj( tn+'qk 

Uj(tn)s j C en, 

U1( j+tn]) 

I 'Iff -J+- jh'~f g(x, t, j 1(tn+q,, j(n')) d Sdj jdt 
j I~ ~ ~ ~ j. 
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The corrector becomes: 

(3.31) uj(tnll) = uj(tn) 

1 fh n( X, t, (tn yj71) u (t n +711)) ds dt 

M1+ jttJ g(x, t, Uj(tn?t+,)) dx dtj. 

For the one-dimensional case, when F is explicitly independent of x and t and g = 0, 

(3.30), (3.31) reduce to (3.22), (3.23). 

4. Statement and Proof of Theorem 3. In this section we state and prove a 

convergence theorem for a particular case of algorithm (3.21), (3.22). We shall 

restrict our attention to the equation 

(4.1) aw + a f(w) = 0 w(x,O) = wO(x), 

where w(x, t) is a scalar, f(w) is locally Lipschitz continuous and the initial data are 

inthespaceL fnLI nBV. 
So that this section is self-contained, algorithm (3.21), (3.22) shall be restated for 

the particular case applied to (4.1). 
Let the values of the step function, u6(x, t), be defined as 

u(xt)= j,ixE [Xj_11/29 Xj+ 1/2 ) t E= [tn, tn+ l ) and j E (C, 9 

(4.2) and 
u,(x, t) = ujn+7,, if x E [x1172, x1+172), = E [tn+1l, tn+l+l) and] n (en, 

where C3 is any subset of the integers (possibly dependent on n); a,= + * + * 

with 0 _O where {GJk}k'= I is any sequence of positive numbers such that ht= I = 1; 

and tfn+71 is given by tn+71i+l = tn+71 + G+1Atn, 1 = 0,...,M- 1. The superscript A 

on u6(x, t) denotes a measure of grid refinement, A = maxjn (Axj, Atn). 

The values Ujn+'1k, k = 1,.. . M - 1, are obtained from ujn via the predictor 

[u;, j CE , 

(4.3) Uj7+ k = {u- k-I 
(Gf ( UjnA+h( , 

u9+7q1), n C 

1=0 

= Atn/Axj. The valuesn+ are then obtained via the corrector 

M-1 

(4 4)~ ~ Uj u+Il = Ujn _ Aj 
f (++h Un+'s 

q 
n+' 

1=0 

Throughout this section, we assume that the numerical flux function, hf(u1, u2), is 

monotone, (that is, hf is nonincreasing in u1 and nondecreasing in u2), locally 

Lipschitz continuous in both ul and u2 and consistent (that is, hf (u, u) = f(u)). 
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We now have the following theorem: 

THEOREM 3. Let u6(x, t) be defined by (4.2), (4.3) and (4.4). Further assume that a 
local CFL type of restriction is satisfied. That is, 

(4.5) An+n;k[ hf (u, vl) -hf (u, V2) _ hf (vI, w) -hf (v., w) 

for all u, w, v1, V2 between the values of u'n+llk ujn+k u1+l k and An+7k is defined by 

f ftn ifj jorj+ 
-- I en 

(4.6) j = 
d 

+A 

t 
{ ?Jk + 1 otherwise. 

Then, the 
lim,io 

u'6(x, t) exists in 
Ll.,#(R) 

on any bounded strip [0, T], and this limit is 
the entropy satisfying solution of (4.1). 

Remark 2. For the numerical flux functions A, B and C (see Eqs. (3.14), (3.16) 
and (3.17), resp.), the restriction (4.5) above reduces to 

(4.7) AAn+qkIf (u)IS 1, 

for all u between the values of uIj'lk u7+k u 7fj Ik. 

Proof of Theorem 3. The first step is to establish the following inequalities: 

(4.8.1) ||U(. tnt )IIL-(R) S Clg 
(4.8.2) ||U1(. tn )|IL'(R) < C29 
(4.8.3) Var( u, ( . t n)) S C3 , 

(4.8.4) |u. tn + Tr) - u(.*, tn)IIL'(R) S C4(r + A), 

where Cl, C2, C3, C4 are constants independent of A > 0 and tn s T. At t =0, 
(4.8.1) through (4.8.3) are valid for all A > 0 if wo(x) E L?f n LI n BV and if 
u'6(x, 0) is defined by averaging. That is, 

u"(x,O) =Ax J 
'+/Wo(s) ds, 

AXi 1/2 

when x E [ Xj_ 1/2 Xj+ 1/2); see [15]. 
We shall prove (4.8.1) and (4.8.2) together. For E8 (en, we use (4.3), (4.4) to 

obtain 
M-I 

(4.9) u+ = 2 a+[j+- XA?hj+h(uj+'1, "f?1I)] 

1=0 
M-1 

- 2 G1i+G(ujn++7j, ujn+'1, U'1?l,; An) 

1=0 

where the definition of G is implied. It should be noted that in the case above we 
have used the fact that Ujn+"' = u for 0 s 1 M -1. Forj e en we find that 

(4.10) Ujl = ujn7M-, 
- 

GMjAn+ hf (ujn+iM-1 Ujn_M-I) 

-G(u,Mjn+um?1M U'1jM1;A)M 
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It can easily be verified that (4.5), along with the use of monotone flux functions, 
implies that G is a monotone operator. More precisely, G(, *, *; v) is a nondecreas- 
ing function of its first three arguments. However, because our CFL restriction is 
local, we can only guarantee that each G(*, ,;v) in (4.9) and (4.10) is monotone in 
the range of its first three arguments. 

Inequality (4.8.1) follows directly from a maximum principle implied by G. Let 

=. + min( u;l , u;, ujjlj) and b =max( u;l, u; +,u;Ji). 

We then have the following maximum (minimum) principle: 

(4.11) aj G(a7 , aj7?, ajn +X; jii) 

S (Un+-q Un+,q uJ+, u +,qj V vn +X ) 

< G( b7'+', 1+7?+,I , b71n+1; vn+?1 ) =bn+q, 

where 

jVA+J,l ifjECE, 
J t+lG?J j if j Mn". 

Inequality (4.1 1) together with a simple calculation easily establishes (4.8.1). 
To establish inequality (4.8.2) we shall derive the pointwise inequality: 

M- I 

(4.12) Iu'+IUj -Cl 7 I 7+16+ (-jAci- jn 
I=0 

where 

Ai =hf (uj .ujl- hf (uj .c), Bj =hf (uj .c) -hf (c,c), c = any real number. 

See [2] for the analogous uniform grid result. 
Three preliminary facts will prove useful. 
Fact I. Given (4.5), where Aj+I1k is replaced by max(a, ,B), we have 

(4.13) |(v- v2) - a(hf(u, v,) - h(u, V2)) + i3(hf(v1, w) - hf(v2, w))j 

Iv1 - v21 - ajhf(u, v1) -hf (u, v2)I )-fIhf (vi, w) -hf (v2, w) . 
The proof of this fact is obvious in view of (4.5) and the monotonicity of hf. 

Fact II. If aj +7"' < c < b,"+', we have 

(4.14) IG( u7n"', u;1Ii; In+iui)-ci 

jU|jn+nl - C| - 
n+nl,&+ 

( 
An+nll IBn+n1I)- 

To prove II we note the definition of G to write the left-hand side of (4.14) as 

I(Ujn+71- C) - vn+'11l (Akn" + +Bn+iii)l. 

Using the triangle inequality, this can be bounded above by 

(U+q - c) - ,n+"'A1,"n+71 n11+ i11++ ,n"iAl i + Pn"IBji'. l(uj 11/-C)-vjn+11lAJn.++l~~~~ +rn+'q'Bjn+7111l + vjn+711/An+1l+V+1ln1/ 

Since j Anj+1, (4.5) guarantees that the first term above satisfies the hypothesis 
of Fact I. Therefore, applying Fact I completes the proof of Fact II. 
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Fact III. The conclusion of Fact III remains valid for Vc E R. The proof follows 
by observing that, in view of the maximum (minimum) principle (4.11), inequality 
(4.14) becomes an equality for c v [ajl+'I, bjl+il]. 

Fact III applied to (4.9) yields inequality (4.12) for the case j E C'E. Fact III 
applied to (4.10) recursively yields (4.12) for the case when j 4 C'E. Now, if we set 
c 0 in (4.12), multiply this by Axj and sum the result on j, we find that the LI 
norm uA(x, t0) is nonincreasing. This establishes estimate (4.8.2). 

We next prove the key estimate of this paper. We shall establish estimate (4.8.3). 
Define 

Cj = Xj(hf(uj, uj) - hf(uj, uj)) 

and 

Dj-Aj(hf(uj+I, uj) - hf(uj, uj)). 

In the case whenj andj + 1 belong to En, we use (4.3), (4.4) to obtain the identity 
M-1 

uin+ --un+ = u'n+- 
- 

Un+ i+(Cjn+-l +Djn+I)l 
1=0 

which, as in (4.9), can be written as 

M-1 
(4.15) Ujn+;-U;+ = - 

Un+I[(Ujn++I-Uj Xl)- (CJ + D )] 
1=0 

One further preliminary fact is necessary: 
Fact IV. Suppose 0 < a < 1, 0 < f3 < 1 and are chosen sufficiently small such that 

Fact I may be applied. We then have 

(4.16) uj+ - uj-a(Cj+l + Dj+l) + 8(Cj + Dj)| 

juj+, - uyj- a(qCj+,+1-pDj+I) + (|Cj|-|Dj|). 

This follows by first noting that the left-hand side of (4.16) is bounded above by 

Uj+ - uj-aC>+i + I8DJI + ,BCJ| + aIDj+?I. 

Applying the result of Fact I to this first term above completes the proof of Fact IV. 
We now apply Fact IV to Eq. (4.15). Taking the absolute value of both sides of 

(4.15) gives us that 

M-1 

jujX1' _ uj+ 
I S + lI( Ujn++''- Ujn7+ ') -+ ( Cqn1 + D,n+'1I)l. 

l=O 

The CFL restriction (4.5) is assumed to be satisfied above. Therefore, we may apply 
Fact IV, with a = /3 = 1, to obtain 

M-1 

(4.17) jUn++'ujn+ 1 
- A (K-n+1IID-Ip,n+tI)] 

l=0 

(4.18) = +A-+ I-ID 1). 
l=O 
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Forj andj + 1 not contained in C?, we may write the identity 

n+1 n+1 - 
1 n+71M-I- - OM A + (fCn+iM I + Dn+1 MI\ ) U1~ I j~j1 

For this range of j we may apply Fact IV with a = ,B = aM, yielding the inequality 

|n +1 U n + 1 <|Un +1 nM-lM I j |O 
-+ I 7' 74M U+MI~ G MA+(C 

Repeating this argument inductively leads us again to (4.18). 

The nontrivial cases occur at the interface; that is forj E C2n and j + 1 5 C2n or 

for]j 2 n andj + 1 E 2n. We consider only the former case since the latter follows 

in a symmetric fashion. 
The corrector (4.4) gives us 

M-I 

uJn.++I-n +I 
- 

=Ujn+ -Ujn- A l+ + (Cjn+-ql + Djn+-ql), 
1=0 

which can be written as 

M-1 

(4.19) U - u'+) -A (Cn+I + Dn+7 )] 
l=0 

M-I 

+ z a,+,[(Ujn+- Ujn) (Un+-ql U'+)]. 
1=0 

Using the predictor (4.3), we have that 

M-1 

a/?+, [(Ujn+ -Ujn) - U n+l - j+/) 

1=0 

M-1 I-1 

= EZ?I+1 z k+ (CJn+ k + Dn++lXk) 

1=0 k=O 

Reversing the order of summation, this becomes 

M-1 

(4.20) ' ( 1- )+ (In++l + D)n+(l + 
0=0 

Substituting (4.20) into (4.19) gives us 

n+1 I 

Ml-1 

= [( - -n+,-Un+q)- + n++ql) (Cn+71i + Djn+7l)]. 
1=0 

Again using Fact IV, with a = et, and /3 = 1, we obtain 

(4.21) 

U n+1 - n+1| 

M-I 

1 = +0 I n+ ijj-Uj + iwI- ( n++ll -ID n++l 1l) + (|Cjn+7q/|-|D jn+7 Q1|) 
l=0 
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Furthermore, from the predictor (4.3) and Fact IV with a = a, and ,B = 0, we have 
that 

I Un++1l - Ujn+X/1l = I Un++ - I , ( C n++1X_1 + D n +Xj -) )Ujn +X - I 
+ - Uj+ - X (I-j+X/- I + j+ I - 

?u;jjI+ - - 
_j 

Repeating the above argument inductively, we arrive at the inequality 
1-1 

(4.22) n+ql- U~+qJ -<U Uj- j 
Cn71 I -I) n71k I). (4 .22) u n+i 11 _ 1 + 1 - | k + 1 J + 1 - J + I 

k=0 

Substitute (4.22) into (4.21) and exchange the order of summation on that result to 
obtain 

M-1 
(4.23) ku+ -n+ l n1un_2 oF+1+ IA ja '-I Dy 

l=0 

Inequality (4.23) is now verified for all j. Summing this on j shows that the 
Var(uA(x, tn)) is nonincreasing, establishing (4.8.3). 

Finally, we shall outline the proof of (4.8.4). From (4.3) we have the obvious 
inequality 

(4.24) - u7ji < s(1 + K)' 2 Ujn+k+- Ujn+k. 
k= -1 

Here, K is the Lipschitz constant for hf. (4.24) shows the variation remains bounded 
at all intermediate time steps, tn+I. For any conservation form difference scheme, 
approximating a scalar conservation law, (4.8.4) follows directly from variation 
boundedness. For details see [15] or [2]. 

It is widely known that (4.8.1) through (4.8.4) implies that every sequence of 
{u"}, with A tending to zero, has a convergent subsequence in the space 
L?([O, T]; L'o,(R)). See [15], or [2]. What remains to be shown is that the limit of 
each subsequence satisfies the entropy condition, as used by Kruzkov [9]. This 
entropy condition implies both the uniqueness of each subsequence's limit and that 
the limit is a weak, entropy satisfying, solution of (4.1). 

To complete the proof of Theorem 3, we therefore need only show for all 
g E Co(R X R+ ), g - 0 and all real numbers c, that 

(4.25) -limf IuA -cIp> + sgn(uA - c)((uA -f(c)>pxdxdt ?0. 

Recall inequality (4.12). This can be written as 

M-1 
(4.26) At -+ + 1A`X+ (I + n?ii ) A 0. 

1=0 

Now, observe that 

(4.27) lAj1 -IBi = sgn(uj1- c)(hf(uj, uj)- hf(uj, c)) 

+sgn(uj - c)(hf (uj, c) - hf(c, c)). 
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Next, multiply (4.26) by qp(xj, t')Axj and sum by parts over j and n. Consistency 
implies that the right-hand side of (4.27) tends to 

sgn(u - c)(f(u) -f(c)) 

boundedly a.e. The remainder of the proof follows in the same fashion as the proof 
of the Lax-Wendroff Theorem. See [12]. 
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